Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Semiconductor pulse power supplies for accelerators at J-PARC

Takayanagi, Tomohiro; Ono, Ayato; Fuwa, Yasuhiro; Shinozaki, Shinichi; Horino, Koki*; Ueno, Tomoaki*; Sugita, Moe; Yamamoto, Kazami; Oguri, Hidetomo; Kinsho, Michikazu; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.242 - 246, 2023/01

At J-PARC, semiconductor short pulse power supplies to replace kicker power supplies and semiconductor long pulse power supplies to replace klystron power supply systems are under construction. We have fabricated a 40kV/2kA/1.2$$mu$$s unit power supply that employs a linear transformer drivers (LTD) system for kickers. Currently, we are working on a high voltage insulating cylinder insulator that suppresses corona discharges using only the insulator structure, without using insulating oil. In addition, the MARX system was adopted for klystron power supply system. A main circuit unit for 8kV/60A/830$$mu$$s rectangular pulse output and an 800V/60A correction circuit unit that improves the flat top droop from 10% to 1% were manufactured. Furthermore, a 2.2kV/2.4kW high voltage SiC inverter charger has been fabricated for this MARX power supply. The presentation will report the evaluation results of each test and prospects for semiconductor pulse power supplies.

Journal Articles

Construction of low-jitter circuit for new kicker power supply using next-generation power semiconductor

Oda, Kodai; Takayanagi, Tomohiro; Ono, Ayato; Horino, Koki*; Ueno, Tomoaki*; Sugita, Moe; Morishita, Takatoshi; Iinuma, Hiromi*; Tokuchi, Akira*; Kamezaki, Hiroaki*; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.610 - 614, 2023/01

Kicker system is being used to kick the accelerated 3 GeV beam into the transport lines in RCS of J-PARC. The current kicker power supply applies thyratrons to discharge switches. We are developing a new kicker power supply using next-generation power semiconductors. The timing of the semiconductor switch operation is determined by the input of an external trigger signal. Large timing jitter causes unstable output pulses and beam loss due to beam orbit deviate from reference orbit. Therefore, a low jitter circuit that achieves high repeatability of 2 ns or less will be developed for the new kicker power supply. A prototype trigger generator has been fabricated, and jitter has been evaluated. The results of the evaluation test and the circuit configuration plan for reducing jitter will be reported.

Journal Articles

LTD semiconductor switch power supply for J-PARC kicker

Takayanagi, Tomohiro; Ono, Ayato; Horino, Koki*; Ueno, Tomoaki*; Sugita, Moe; Togashi, Tomohito; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.53 - 57, 2021/10

We are developing the LTD semiconductor switch power supply, which combines SiC-MOSFET semiconductors and Linear Transformer Drivers (LTD) circuit to replace the kicker power supply in J-PARC. This power supply consists of two types of circuit boards: a main circuit board for forming rectangular pulses and a correction circuit board for compensating for flat-top droop, which enables high-voltage output and droop compensation for the number of stages connected in a hierarchical series. In addition to the main circuits of the thyratron, PFN, and end-clipper, which are the main circuit board is a single 400 mm $$times$$ 430 mm board with a reflected wave absorption circuit that can reduce the beam impedance from the kicker magnet. In this study, we used 32 main circuit boards with 1.7 kV SiC-MOSFETs and 20 compensation boards with 100V MOSFETs to achieve the required 40 kV output rating as a kicker power supply. The evaluation results will be reported.

Journal Articles

Kicker power supply for J-PARC 3-GeV RCS with SiC-MOSFET

Takayanagi, Tomohiro; Ono, Ayato; Ueno, Tomoaki*; Horino, Koki*; Togashi, Tomohito; Yamamoto, Kazami; Kinsho, Michikazu; Koizumi, Isao*; Kawamata, Shunsuke*

JPS Conference Proceedings (Internet), 33, p.011020_1 - 011020_6, 2021/03

We are developing a new kicker power supply for J-PARC 3-GeV RCS (Rapid-Cycling Synchrotron) using the next generation power semiconductor SiC-MOSFET with high withstand voltage, low loss, and superior high frequency characteristics. The three major circuits adopted for the RCS kicker power supply, the thyratron switch, the PFN circuit of coaxial cable type, and the end clipper for reflection wave absorption, has been realized with a single modular circuit board based on the LTD circuit. The new kicker power supply realizes stable operation, miniaturization and energy saving by using power semiconductors. The required high voltage can be output by stacking the 800V/2kA modular circuit board in series. The details of circuit design and the results of achieving an output of half 20kV/2kA against the target specification of 40kV/2kA are presented here.

Journal Articles

Semiconductor switch power supply for RCS kicker

Takayanagi, Tomohiro; Ono, Ayato; Horino, Koki*; Ueno, Tomoaki*; Togashi, Tomohito; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.25 - 28, 2020/09

We have been developing a semiconductor switch power supply to replace the RCS kicker power supply in J-PARC. A SiC MOSFET is used as a power semiconductor element, and a radially symmetric LTD circuit is used for the circuit board. The power supply consists of a combination of two types of circuit boards: a main circuit board, which includes the circuits of the thyratron, PFN and end clipper provided in RCS kicker power supplies, on a single module board, and a correction board, which compensates for flat-top droop. A single main circuit board can provide 800V/2kA output, and 52 main circuit boards and 20 correction boards have been used to successfully achieve the high voltage of 40kV and flat-top flatness of less than $$pm$$0.2%. Furthermore, a preliminary test of the dual-parallel circuit was conducted for a twin kicker power supply configuration, which is required for the RCS kicker power supply. The evaluation results and prospects are presented.

Journal Articles

Development of ignitron alternative semiconductor switch and new kicker power supply for J-PARC accelerator

Ono, Ayato; Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki*; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.399 - 403, 2019/07

J-PARC uses an ignitron switch as the klystron power source clover device and a thyratron switch as the kicker power system. Ignitron uses mercury, which is of limited use worldwide, and is expected to be discontinued in the future. Therefore, a semiconductor switch for ignitron substitution using a MOS gate thyristor is designed. In order to be used as a crowbar device, a switch capable of resisting an operating output of 120 kV, 40 kA, 50 us is required. We have realized an oval type substrate module that achieves an operating output of 3 kV, 40 kA, 50 us per substrate. In addition, we adopted a LTD circuit using SiC-MOSFET as an alternative switch for thyratron, and produced a radially symmetric pulse power supply circuit to which this circuit was applied. This circuit board achieves a rise of 250 ns or less, and a flat top of 1.5 us or more necessary for the RCS kicker power supply system, with a pulse output of 800 V and 2 kA per circuit board. We report on the power test results at 20 kV.

6 (Records 1-6 displayed on this page)
  • 1